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PARALLEL VECTOR FIELDS ON MANIFOLDS
WITH BOUNDARY
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1. Introduction
For closed manifolds it is apparently a nontrivial problem to find necessary
and sufficient topological conditions for the existence of a vector field which
is parallel with respect to some Riemannian metric. It is known that if a
closed Riemannian #-manifold admits a parallel vector field, then its Euler-
Poincare characteristic is zero, its Betti numbers satisfy

by>landb,, 25, —b_forl <k<n-—-1

(Chern [2] and Karp [3]) and all of its Pontryagin numbers are zero (a
consequence of a result of Bott [1]).

In this note we shall show that every compact manifold with boundary
admits a vector field which is parallel with respect to some Riemannian
metric by showing that every transient vector field is parallel with respect to
some Riemannian metric. In the language of differentiable dynamical sys-
tems, a vector field is transient if its non-wandering set is empty. It was
shown in [5] that a vector field on a compact manifold with boundary is
transient if and only if it is a nowhere-zero gradient vector field with respect
. to some Riemannian metric. The proof we shall give of the fact that a
transient vector field is parallel is just a slight modification of the proof in [5]
_that a transient vector field is a nonvanishing gradient field. The question of
whether or not a transient vector field must be parallel was raised by Rene
Thom [6]. ’

2. Definitions and results
Throughout this note, M is a compact connected smooth (n + 1)-manifold
with nonempty boundary, oM, N is the double of M, and X(P) is the
collection of smooth vector fields on a smooth manifold P. We shall work
with the following definition of transient.
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Definition. X & (M) is said to be transient if each integral curve for X
leaves M in finite positive and negative time.

Thus each trajectory of a tranmsient vector field is a compact arc whose
endpoints are on dM. Note that a transient vector field can never vanish, but
it is still possible for a trajectory to be a single point—which must be on oM.
Such a point is called a point of exterior tangency because if the vector field
is extended to N, then locally the trajectory through the point is a curve
which is tangent to dM from outside of M.

Definition. X &€ X(P) is said to be strongly paraliel if there ex1st a positive
1nteger K and an embedding a: P — R¥ such that a, X = 9/3z|a(P), where
a, is the differential map of «, and z is a nontrivial linear functional on RX,
e.g., the last coordinate function. (Note that such an X is parallel in the usual
sense with respect to the Riemannian metric on P which is the pull-back by a
of the standard Riemannian metric on R¥))

Theorem. If X & X(M) is transient, then X is strongly parallel.

The proof of the theorem will be given in the next section.

Corollary. The set of strongly parallel vector fields on M is nonempiy.

Proof. The set of transient vector fields on M is nonempty [5], since the
gradient with respect to any Riemannian metric of a smooth function on M
with no critical points is easily seen to be transient. Such a function can be
produced by the following device. Let f be a Morse function on N, and let
Xy + ¢+, X, be the critical points of f in M. Choose nonintersecting simple
arcs yp, * * -, ¥ such that y; starts at x; and meets 0M just once where it
ends. Use the arcs y; as guides for “fingers” which push dM into M in such a
way that the arcs Y and hence the critical points Xjs then lie outside of dM. In
effect, this pushes all the critical points of f into N — M.

3. Proof of the Theorem
The idea of the proof is simply to combine the flow tube technique in [5]
with the well-known proof that a compact manifold embeds in some
Euclidean space—see, for example, [4].
Let X € X(N) be an extension of X to N, and let ¢: N X R— N be the
flow associated to X. Since X is transient, for every x € M there exists an
" open interval I = (a, b) C R such that 0 € I, ¢|{x} X Iis 1-1 and
o(x, a), ¢(x, b) EN — M.
It follows that there exists an embedded open n-ball £ N such that x € Z,
= is transverse to X , |2 X Iis an embedding, and

&(Z X {a,b})CN—- M.



PARALLEL VECTOR FIELDS 103

In [5], the set (2 X I) was called a flow tube for X with ends outside of M.

Since M is compact, there exists a finite set of points x;, - - -, x, € M such
that the associated flow tubes ¢(Z; X I),i = 1,- - - , k, cover M.
Let

Y o2, X I[) > 2, X 1,
be the inverse of ¢|=; X I, let
7 (2, X [) >3,
be y; followed by projection of Z; X I, onto Z,, and let
GioE X)L
be ¢, followed by projection of Z;, X I, onto I, When f, is a map from

&(Z; X I)) to a Euclidean space, let f* be the map from M to the same
Euclidean space defined by

_ i omneE, x )N M,
= {O on M — ¢(Z; X I).
Let £: 2, >R, i=1,---,k be a set of smooth functions with the
following properties:
@0<§<], :
(b) £, has compact support in Z,, and
(c) if A, is the interior of {x € Z;|£(x) = 1} (with respect to the topology
on Z), then the flow tubes ¢p(A; X I)),i =1, - - -, k, still cover M.
Let p, = £, o m; and
3 k
§ = Elp,»*si-*/ 219,-*-
i= i=
Then { is a smooth function on M and X{ = 1, since )Zg“i =1on¢Z X I)
and p}¥ is constant on trajectories of X in M. Thus { is a globally defined time

coordinate along trajectories of X.
Define a: M — R* X (R*)* X R by

a(x) = (pF(x), - - -, pE(x), PF(X)7H(x), - - -, PE(X)7E(x), §(x)),
where 7; is now considered to map into R” by identifying its target space Z;
with the open unit ball in R”. We shall show that « is an embedding and that
a,X = 8/0z|a(M), where z is the coordinate function for the product space
R* X (R")* X R corresponding to the last factor R.

To prove that a is 1-1, suppose a(x) = a(y). Let J be the (necessarily
nonempty) set of indices i for which p¥*(x) 7= 0. Then x and y lie on the same
trajectory segment, call it S, in

M #(Z; x 1)

jeJ
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because p*(x) =p*(y), i =1,- -, k, and 7*(x) = 7*(y), f €J. Let {s: S
— R be defined by

=305/ o
jeJ JjEJ

Then {g(x) = §(x) = {(¥) = §s(»). But, for j € J, p; is constant on § and §;
is a time coordinate along S, so {gis -1 on S. Thus x = y, soais 1-1.

Since « is smooth and M is compact, it follows that a is a homeomorphism
onto its image. The proof that « has rank » + 1 at each point is straightfor-
ward. Thus we can conclude that a is an embedding,.

Finally, a,X = 3/9z|a(M) because a takes trajectories of X to line seg-
ments parallel to the z-axis, since p* and #*, i = 1,- - - , k, are constant on
trajectories of X, and because

(a*X)(z) =X(zea)=X{=1.
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